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The Influence of Spatial Variations of
Diffusion Length on Charge Collected

by Diffusion from Ion Tracks
Larry D. Edmonds

Abstract—Charge collected by diffusion from ion tracks in
a semiconductor substrate may be influenced by the substrate
diffusion length, which is related to recombination losses. A
nonuniform spatial distribution of recombination centers results
in a nonuniform diffusion length function. A theoretical analysis
shows that, excluding some extreme cases, charge collection is
insensitive to spatial variations in the diffusion length function,
so it is possible to define an effective diffusion length having the
property that collected charge can be approximated by assuming
a uniform diffusion length equal to this effective value. Extreme
cases that must be excluded are those in which a large number
of recombination centers are confined to a narrow region near
the substrate boundary.

Index Terms—Charge collection, diffusion, diffusion length, ion
track, recombination.

I. INTRODUCTION

T HE SUBJECT considered is charge collection in a sili-
con device by diffusion from an ionizing source when

collected charge is limited by recombination losses in the
substrate. The recombination loss is represented by a finite
diffusion length in the diffusion equation. A nonuniform
spatial distribution of recombination centers (RC’s) results in
a nonuniform diffusion length function. The specific question
considered is whether collected charge is sensitive or insensi-
tive to variations of the diffusion length function in the vertical
coordinate. A theoretical analysis shows that charge collection
is insensitive to such variations, so, for all but the most
obstinate cases, it is possible to define an effective diffusion
length having the property that collected charge can be roughly
approximated by assuming a uniform diffusion length equal
to this effective value.

The analysis and conclusions apply to a number of ar-
rangements (e.g., solar cells having reduced lifetimes due to
displacement damage), but the prototype arrangement assumed
for discussion is an ion track which extends into a heavily
doped substrate below an epitaxial (epi) layer in a large-
area silicon epi diode. Computer simulations have shown [1]
that charge collection includes not only charge liberated in
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the epi layer, but also charge liberated in the heavily doped
substrate below. Charge flow from the substrate to the epi
layer is strongly influenced by recombination losses because
the carrier lifetime is very short in the heavily doped substrate.
Computer simulations have also shown [2] that the minority
carrier diffusion equation, which contains the minority carrier
diffusion length, provides a rough approximation for charge
reaching the epi layer from the substrate as a function of time.
The track density can exceed the doping density even in a
heavily doped substrate, but the four-dimensional space–time
volume characterized by this condition is sufficiently small
for this equation to provide a rough approximation. Although
the approximation is rough for charge reaching the epi as
a function of time, simulations show [2] that the minority
carrier diffusion equation is very accurate for calculating total
(integrated in time from zero to infinity) charge reaching the
epi, which is added to the charge liberated within the epi
to produce total collected charge. Simulations show that this
accuracy is very good whether the ion linear energy transfer
(LET) is 1 or 40 MeV-cm2/mg. Charge collection estimates
from such calculations were also found to fit experimental
charge collection measurements very accurately [3].

That the diffusion equation describes total charge collection
in epi diodes has been demonstrated both experimentally and
by computer simulations in earlier papers as discussed above.
Hence relevancy of this equation has already been established.
The present paper considers mathematical approximations for
solving the diffusion equation to obtain estimates of collected
charge. This equation is only useful if it simplifies calculations
(otherwise, we may as well let a computer simulation solve
the charge collection problem). A complication is that the
diffusion length is not likely to be spatially uniform because
the RC distribution is not likely to be uniform. If it is
necessary to account for a nonuniform diffusion length, the
diffusion equation is no longer useful because calculations are
no longer simple. The objective of the present paper is to
show that, excluding some extreme cases, reasonably accurate
charge collection estimates can be obtained from the “uniform
approximation” which assumes that the diffusion length is
spatially uniform and equal to some appropriately selected
effective value. In other words, because applicability of the
diffusion equation has already been established, the objective
is merely to show that a simple analytical calculation (the
uniform approximation) produces nearly the same answer as
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a more difficult analytical calculation (the diffusion equation
with a nonuniform diffusion length) over a broad range of
conditions. Therefore, the theory is purely mathematical. Un-
fortunately, this broad range of conditions does not include all
conditions. There are some problem cases in which the uniform
approximation fails badly. Therefore, a second objective is to
identify the “problem cases” so that the reader will know when
the uniform approximation can be used and when it should not
be used. Fortunately, these problem cases are so extreme that
they should rarely, if ever, occur in the real world.

The analysis will show that charge collection is insensitive
to spatial variations in the RC distribution, even when these
variations are large. To make this statement more precise, sup-
pose two RC distributions have the property that both give the
same collected charge for an effectively infinitely long track.
If we now select an arbitrary track, long or short, and compare
the two distributions with the same track in both, we will find
that, excluding the problem cases, the two distributions also
give approximately the same collected charge for this track.
In particular, if we are given some actual RC distribution and
then construct a uniform distribution with the density selected
to give the same collected charge for an infinitely long track
as the given distribution, this uniform distribution will also
approximate the actual distribution, excluding the problem
cases, with regards to charge collection from any track, long
or short. Therefore, the effective value for the diffusion length
that should be used with the uniform approximation is the
value that makes the uniform approximation become exact for
tracks that are effectively infinitely long. This same effective
value can be used with the uniform approximation to obtain
reasonably good charge-collection estimates (excluding the
problem cases) for any track length, long or short.

Although a prototype arrangement (an ion track extending
into a heavily doped substrate below an epi layer in a sil-
icon epi diode) is selected for visualization and to provide
terminology (allowing statements to be expressed in terms of
physical quantities instead of mathematical abstractions), the
analysis to follow is merely a mathematical investigation of the
diffusion equation and may also apply to some other device
types and/or materials. However, when considering physical
arrangements other than this prototype, it should be noted
that there are two separate questions. The first is whether the
diffusion equation applies, and the second is, given that the
diffusion equation does apply, does the uniform approximation
apply. The sections to follow focus on the second question.
The first question was discussed here only for the prototype
arrangement. It is up to the reader to find the answer to the
first question for other physical arrangements of interest to
the reader. However, some guidance might be found in earlier
work emphasizing that the diffusion equation may have other
applications. For example, Wouters [4] used diffusion theory
to predict the performance of some low-voltage radiation
detectors. On the subject of single event upsets (SEU), Dodd
et al. [5] concluded that multiple-bit SEU in at least some
double static random access memory (SRAM) cell structures
from “between-node” strikes is by diffusion. Zoutendyket
al. [6] postulated that charge collection by remote nodes in
DRAM’s leading to multiple-bit SEU is by diffusion. Moreau

et al. [7] concluded that diffusion results in “extended sensitive
areas” for SEU in complementary metal–oxide–semiconductor
SRAM’s. Smithet al. [8] postulated that diffusion may explain
SEU cross section features better than drift for small devices
with long time constants. A more recent paper [9] concluded
that diffusion theory predictions agree with measured SEU
cross section versus LET curves for many devices, if the
LET is large enough for the cross section to be large enough
so that ion hits at the cross-section perimeter require that
charge first be transported by diffusion before reaching the
sensitive node. On a more academic level, two earlier papers
[2], [10] concluded that even when funneling is strong, there
is still an interrelationship between drift and diffusion so that
charge collection is intimately related to diffusion, and it is
necessary to solve the diffusion equation (among other things)
to calculate collected charge.

Another issue worth mentioning is that several of the papers
referenced in the above paragraph [2], [4], [8] include recombi-
nation losses in their analytical results, but a spatially uniform
diffusion length is always assumed. By arguing that this
assumption is fine (i.e., answers are approximately correct even
when the assumption is wrong), the present paper enhances the
value of some of this earlier work.

II. A PREVIEW OF CONCLUSIONS TOFOLLOW

The motivation behind a set of mathematical arguments,
leading to a set of conclusions, is clearer when it is known in
advance what the conclusions will be (i.e., a proof is easier
to follow if we first state the theorem that is to be proven).
Therefore, a preview of the conclusions to follow is given here.

The problem considered is the prototype arrangement pre-
viously described subject to the following qualifications. The
RC density is assumed to be uniform in the lateral coordinates
but can be nonuniform in the vertical coordinate. This density
is assumed to be increasing with depth up to some peak value
at some arbitrary depth and then decreasing with depth, but
is an otherwise arbitrary function of depth. This condition is
expected to include most cases of practical interest in which
the RC distribution is created by displacement damage. The
track must extend from the top of the substrate (or higher,
but the track section above the substrate is not relevant to
this discussion) to some depth below, i.e., we exclude tracks,
such as might be produced by proton-induced nuclear reaction
products, which begin and end in the substrate interior. There
may be a limitation regarding longitudinal track structure,
but this discussion is deferred to the end of this section.
The track radius is arbitrary. The objective is to determine
whether the uniform approximation applies and to obtain an
estimate of the effective diffusion length to be used in this
approximation.

We start with the effective diffusion length estimate. This is
the value that makes the uniform approximation exact when
predicting collected charge from tracks that are infinitely long.
One experimental method for finding this value is to measure
collected charge [3] from long ion tracks having a nearly
constant LET over most of the track length. The track is
long enough if significant changes in track length do not
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significantly change the ratio of collected charge divided by
ion LET. The effective diffusion length is the charge diffusing
to the epi layer (which is the total collected charge minus the
charge liberated in the epi layer) divided by the linear track
density (charge per unit length which is calculated from the
ion LET).

To determine applicability of the uniform approximation, it
is necessary to estimate the location of the peak in the RC
density. This requires some knowledge of how the RC distri-
bution was created. If it is due to displacement damage from
highly penetrating particles, no estimate is needed because the
uniform approximation can be taken for granted. If the RC
distribution is due to displacement damage from particles that
stop in the device, and if it can be assumed that most of the
damage is at the end of the particle range, the stopping depth
is an estimate of the location of the peak in the RC density.

The conclusions are as follows: if the depth at which the
RC density is greatest is less than 3/2 of the effective diffusion
length, do not use the uniform approximation. This could be
(probably not, but possibly) a problem case in which the
approximation fails badly. If this depth is greater than or
equal to 3/2 of the effective diffusion length, then the uniform
approximation is at least reasonably accurate. Errors between
predicted and actual charge collected from a given track are
on the order of 20% or less, regardless of how uniform the
RC density is and regardless of track length. Whether the
approximation is merely reasonably accurate or is excellent
for arbitrary track lengths depends on how uniform the RC
density is. However, even when the RC density varies as
much as can be seen by looking ahead to Fig. 6(a) (which
plots the reciprocal of the diffusion length against depth), the
accuracy is quite good, as shown in Fig. 6(b) (which compares
plots of a normalized collected charge versus track length).
RC density variations must be very extreme in order for the
uniform approximation to not be good.

It should be acknowledged that there may be a limitation
regarding longitudinal track structure. The analysis used to
derive the conclusions applies to a linear track density that
is uniform over a finite track length that begins at the top
of the substrate and ends at some arbitrary depth. However,
a superposition of such tracks can simulate any nonuniform
linear density that does not increase with depth. Therefore,
if the uniform approximation is accurate for uniform tracks
starting at the top of the substrate and having arbitrary length,
then it is also accurate for nonuniform tracks if the linear
density does not increase with depth. The fact that the theory
does not apply to tracks having a linear density that increases
with depth is a weakness of the present analysis because
variations in the track density will change quantitative results.
However, the conclusion, that the uniform approximation is
reasonably accurate except under some extreme conditions,
may still be valid even though the mathematical derivation of
the conclusion is not. This is suggested by data presented in
[3]. Ions used for the charge collection measurements were
alpha particles having an LET that increases with depth. As
discussed in more detail in Section V, the RC distribution is
expected to be very nonuniform, yet the uniform approxima-
tion fit measured data very well.

III. T ERMINOLOGY AND STATEMENT

OF THE MATHEMATICAL PROBLEM

The assumed physical arrangement consists of a device
substrate containing an ion track which extends from the upper
substrate surface to a depth equal to the track length. The
upper substrate boundary is assumed to be an infinite plane
which is a sink for minority carriers. The substrate is assumed
to be infinitely thick, although the analysis in the Appendix
also treats finite thicknesses. The track radius is arbitrary
because an integration in the lateral coordinates eliminates the
track radius from the equations. The linear track density is
assumed to be uniform over the track length, so the track is
completely described by two parameters, which are the track
length and the linear density. Charge that reaches the upper
surface via diffusion from the track is determined by the two
track parameters and by the substrate diffusion length function
which describes recombination losses in the substrate. The
diffusion length function is assumed to be laterally uniform,
but may be highly nonuniform in the vertical coordinate due
to a nonuniform RC density.

The uniform approximation estimates collected charge by
assuming some appropriately selected effective (uniform) dif-
fusion length. The objective is to use diffusion theory to show
that this approximation can, sometimes, provide a reason-
ably accurate estimate, even when the actual diffusion length
function is highly nonuniform. The uniform approximation
can obviously produce correct results if different effective
diffusion lengths may be assumed for different ion tracks. The
objective is to show that reasonably accurate estimates can be
obtained for any ion track when the same effective diffusion
length is assumed for all track lengths. Let denote
collected charge when the track length is. The objective is
to show that there is an effective diffusion length having the
property that the uniform approximation produces a reasonably
accurate estimate of for any between zero and .

The linear track density implicitly contained in is
superfluous when investigating the adequacy of the uniform
approximation. It is convenient to define a normalized,
which is denoted and defined to be divided by
the linear track density. Note that has the dimensions
of distance. The quantity has a special significance
because it has two interpretations. The first interpretation is
immediately implied by its definition; it is the normalized
charge collected from an infinitely long track. Note that for
the special case of a uniform diffusion length, the normal-
ized charge collected from an infinitely long track equals
the diffusion length. Therefore, the second interpretation of

is an effective diffusion length. It is the value that
must be assigned to the effective diffusion length in order
for the uniform approximation to correctly predict collected
charge from an infinitely long track. In fact, is the
effective diffusion length that will be used with the uniform
approximation in all discussions to follow. This choice for
the effective diffusion length ensures that the uniform approx-
imation will be accurate whenever the track is sufficiently
long. However, it is still not clear how long is “sufficiently
long,” or how good the approximation is when the track is
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not sufficiently long. These questions are answered in the
following sections.

IV. UPPER AND LOWER BOUNDS

Because has a dual interpretation, it is sometimes a
convenient unit for measuring both the dependent variable
and the independent variable, i.e., it is sometimes conve-
nient to plot the dimensionless parameter against
the dimensionless parameter . The first parameter is
interpreted as the charge collected from a track of length
divided by the charge collected from the infinitely long track,
while the second is interpreted as the track length divided by
the effective diffusion length. The uniform approximation is
expressed in terms of these dimensionless parameters as

uniform approximation (1)

It is shown in the Appendix that, no matter what the actual
diffusion length function is, an upper bound for the actual

is given by

if

if .
(2)

Unfortunately, there is no universal lower bound, except zero.
To obtain a nontrivial lower bound, it is necessary to impose a
constraint that limits the diffusion length functions that may be
considered. The type of constraint that is convenient from the
point of view of the analysis is to stipulate that less than some
specified fraction of collected charge may come from depths
exceeding some specified multiple of the effective diffusion
length. For example, we might consider the diffusion length
functions satisfying the constraint

Less than 10% of the charge collected from the

infinitely long track is from depths exceeding

four times the effective diffusion length. (3)

This constraint was arbitrarily selected only for illustration.
It will be seen shortly that the lower bound consistent with
this constraint does not even roughly agree with the uniform
approximation, illustrating that there are some problem cases
(at least in theory if not in the real world) in which the uniform
approximation fails badly. It is shown in the Appendix that a
lower bound for any consistent with this constraint
is given by

if

if
(4)

Plots of the right sides of (1), (2), and (4) are shown
in Fig. 1. This paper calls a 20% error “reasonably good,”
so agreement between the upper bound and the uniform
approximation is reasonably good. This implies that agreement
between the uniform approximation and any actual curve that
is above this approximation must also be reasonably good,
because any such curve is bracketed between the uniform
approximation and the upper bound. However, agreement

Fig. 1. Plots of the uniform approximation, the upper bound (no restrictions),
and the lower bound [subject to (3)].

between the uniform approximation and the lower bound is
not as good. If (3) is relaxed to include a larger class of
diffusion length functions, the lower bound becomes lower and
agreement becomes worse. The uniform approximation fails
badly when the actual curve approximates the lower bound
corresponding to a constraint that is more relaxed than (3).

It is unfortunate that there are cases such that the uniform
approximation does not work well. It can be shown that such
cases are produced when a very large number of RC’s are
confined to a very narrow region that is very close to the upper
surface. However, the approximation is reasonably good under
all other conditions. For example, if a very large number of
RC’s are confined to a very narrow region, but this region is
at a depth of at least three halves of the effective diffusion
length, the actual curve will resemble the upper bound in
Fig. 1, which is fairly close to the uniform approximation. The
approximation becomes even better for the less extreme cases
in which the RC density is spread out to the extent that the
density does not vary by more than a factor of a few (e.g., five
or less). For these cases, the actual curve will look more like
the uniform approximation than either bound shown in Fig. 1.
These statements are illustrated by numerical examples in the
next section.

V. NUMERICAL EXAMPLES

The statements at the end of the previous section can be
illustrated by numerical examples. Selection of the examples
is motivated by the experimental results presented in [3].
These results actually go beyond validating the applicability
of the diffusion equation. They tend to validate the applica-
bility of the diffusion equation combined with the uniform
approximation because the uniform approximation was used
to derive predictions that were found to fit measured data.
Measurements of charge collected by epi SRAM’s from ion
tracks were compared to predictions that were calculated from
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the assumption that collected charge consists of the charge
liberated in the epi layer plus an additional contribution that
diffuses to the epi from the heavily doped substrate below,
with the latter charge calculated from the diffusion equation
combined with the uniform approximation. Predictions fit the
data very well for both virgin devices and devices that had
a greatly reduced diffusion length as a result of extensive
exposure to heavy ion irradiation. This irradiation was the
result of extensive and repeated latchup tests, resulting in a
very large accumulated fluence from very heavy ions. The
test ions were 295 MeV Kr and 451 MeV Xe, both having
a range of just under 40m in silicon. Nearly all tests were
done at large incident angles (because this was expected to be
worst case for latchup) which varied between 60 and 70,
implying ion stopping depths between 14 and 20m. All
devices were found to have an overlayer thickness of about
4 m. Different devices had different epi thicknesses, but the
device having a 5-m epi is selected for illustration. The ion
stopping depth was 5–11m below the bottom of the epi or
top of the substrate. Ion energies were strongly dependent on
depth for depths between the top of the substrate and stopping
depth. It is therefore reasonable to assume that the induced RC
distribution in the substrate is confined to the upper 5–11m
and highly nonuniform within this region.

Although [3] presents experimental validation of the uni-
form approximation, it does not present any theoretical ex-
planation as to why the uniform approximation should apply.
The excellent agreement may be somewhat surprising because
the actual diffusion length function is likely to be spatially
nonuniform as pointed out in the above paragraph; yet, for
each device considered, the same effective diffusion length
accurately predicts collected charge from any ion track, long
or short. The examples below were selected to provide the
theoretical explanation, not given in [3], for the excellent
agreement reported in [3]. The heavily irradiated devices
having reduced diffusion lengths are the most interesting
because they are likely to have the greatest nonuniformity in
the RC density.

Charge collection measurements found the effective diffu-
sion length to be about 2m for the heavily irradiated devices.
The virgin devices were found to have an effective diffusion
length of about 10 m. There was sufficient evidence that this
difference between diffusion lengths is not due to random part-
to-part variations, so it is assumed that the irradiated devices
had a 10- m diffusion length prior to irradiation. Although
there is some information regarding the RC distribution, we
will enlarge the number of cases considered by ignoring
this information and consider a sampling of all possible RC
distributions satisfying the constraints that the post-irradiated
effective diffusion length is 2 m and the pre-irradiated effec-
tive diffusion length is 10 m. For each distribution selected
from the sampling, we compare the exact for the selected
distribution to the uniform approximation. The reciprocal of
the diffusion length function, which is a measure of the RC
density, is assumed to be a blip (possibly narrow or possibly
broad) representing a (possibly localized or possibly spread-
out) RC distribution produced by irradiation damage. The
asymptotic (large depth) value of the diffusion length function

is assumed to be the pre-irradiated value. The mathematical
form of the diffusion length function, which was selected
primarily on the basis of analytical tractability, is deferred
to the Appendix because the qualitative characteristics shown
in the figures discussed later are probably more relevant than
mathematical expressions.

We consider a sampling of all possible diffusion length
functions which are described by the equations in the Appen-
dix, have the asymptotic value of 10m, and are consistent
with m. The sampling will be worst case
from the point of view of demonstrating adequacy of the
uniform approximation. This is accomplished by making the
blip width as narrow as possible (within limits stated below),
to obtain the greatest possible nonuniformity consistent with
the stated conditions. Depending on the location of the blip
center, an arbitrarily narrow blip may be mathematically
compatible with the stated conditions if the blip amplitude is
correspondingly large. This occurs when the blip is sufficiently
close to the surface. When this is the case, the blip width is
taken to be about 1 m because this is sufficiently close to
the mathematical limit (the blip approximates a Dirac delta
function). However, if the blip center is sufficiently deep, it is
no longer true that an arbitrarily narrow blip can satisfy the
condition that m. Some spread is required so that
the RC density extends to higher locations. When this is the
case, the blip width is selected to be the smallest value such
that the condition can be satisfied. It can be shown that the
demarcation between these cases occurs when the blip center
depth is approximately twice the effective diffusion length
(or 4 m for the examples to follow). The approximation is
accurate when recombination from the RC’s outside and above
the blip can be neglected. The sampling will use a 1-m blip
width (approximately) if the blip center is at a depth less than
4 m and the minimum allowed blip width for larger depths.

Note that the shallow blips could be excluded on the basis
of relevancy to the measured data, because a shallow and
narrow blip could only be produced by damaging ions that
stop near the top of the substrate. The damage in the parts
considered was produced by ions that stop deeper in the
device. Excluding the narrow and shallow blips will give a
much more favorable impression regarding the adequacy of the
uniform approximation. However, such cases may be relevant
under other circumstances, and it may be important to know
that the uniform approximation does not always work well.
Therefore, the sampling includes such cases even though they
are not relevant to the measured data. As a reminder, the RC
distributions assumed in the sampling are not intended to be
physically realistic; they are intended to be worst case in the
sense of having the greatest possible nonuniformity allowed
by the constraints.

The sampling is shown in Figs. 2–6. Each figure presents an
assumed RC distribution, measured in terms of the reciprocal
of the diffusion length function , and compares different
predictions of the normalized collected charge. The in

is interpreted as depth, while thein is interpreted
as track length. Each curve identified as “exact” was
calculated from the exact equation describing the assumed

function.
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(a)

(b)

Fig. 2. The assumedLD in (a) produces the exactI in (b), which is
compared to the uniform approximation in (b).

The exact curve in Fig. 2 resembles the uniform approxi-
mation when is less than 1 m because this places the track
above the blip. However, the exact curve is approximately
linear and far below the uniform approximation for larger.
In fact, the exact curve in Fig. 2 is even lower, at the larger
values of , than the lower bound shown in Fig. 1. This is
because the exact curve in Fig. 2 violates the constraint (3)
that applies to the lower bound in Fig. 1. If the blip is moved
higher than the 1-m depth, the point where the exact curve
and uniform approximation diverge in Fig. 2 will move further
to the left, and the exact curve will approximate the lower
bound corresponding to a constraint that is much more relaxed
than (3). Such small blip depths are the problem cases in
which the uniform approximation fails badly. However, the
approximation becomes better as the blip is moved down.

(a)

(b)

Fig. 3. The assumedLD in (a) produces the exactI in (b), which is
compared to the uniform approximation in (b).

It is still not very good in Fig. 3 but is reasonably good in
Figs. 4 and 5. Note that the exact curve in Fig. 5 resembles
the upper bound in Fig. 1. The blip in Fig. 5 is as deep as
it can be without increasing the blip width. It is impossible
for to be as small as 2m unless the blip adds some
RC’s to the region above the 4-m depth. A blip deeper
than 4 m implies that there must be some spread such as
shown in Fig. 6. Now that some spread is present, the uniform
approximation becomes quite good. Although there is some
spread, the RC density is still very nonuniform. It is therefore
rather impressive that the uniform approximation works so
well.

If the trend started by Figs. 2–6 is continued beyond Fig. 6,
the RC density becomes progressively more uniform and the
uniform approximation becomes progressively better. Even
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(a)

(b)

Fig. 4. The assumedLD in (a) produces the exactI in (b), which is
compared to the uniform approximation in (b).

Fig. 6 probably did not carry the trend far enough to represent
the actual test devices because the minimum ion stopping
depth was 5 m below the top of the substrate, and most ions
stopped deeper. The uniform approximation is probably even
more accurate for the RC distribution in the actual devices
than indicated in Fig. 6. This is the theoretical explanation for
the excellent agreement empirically found and reported in [3].

VI. CONCLUSIONS

Accuracy of the uniform approximation was investigated
for those cases in which the diffusion equation applies. It
was found that, at least for some hypothetical cases, the
approximation does not always work well. It fails badly
when a large number of RC’s are confined to a narrow

(a)

(b)

Fig. 5. The assumedLD in (a) produces the exactI in (b), which is
compared to the uniform approximation in (b).

region at a depth less than 3/2 of the effective diffusion
length, as illustrated in Figs. 2 and 3. However, when such
extreme cases are excluded, charge collection is insensitive
to spatial variations in the RC distribution (subject to the
important qualification that all distributions being compared
produce the same effective diffusion length), and the uniform
approximation ranges from reasonably good to excellent even
when the RC distribution is very nonuniform, as illustrated in
Figs. 4–6.

The theory does not apply to charge collection from ion
tracks having an LET that increases with depth, and this is
a limitation of the present work. However, experimental data
suggest that the conclusion, that the uniform approximation
is reasonably accurate except under some extreme conditions,
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(a)

(b)

Fig. 6. The assumedLD in (a) produces the exactI in (b), which is
compared to the uniform approximation in (b).

may still be valid even when the mathematical derivation is
not.

APPENDIX

MATHEMATICAL ANALYSIS

A. An Expression for

We eventually consider substrates that are effectively infin-
itely thick, but it is convenient to start with a finite thickness
and take a limit later. The substrate is imagined to lie between
two infinite planes which are both sinks for minority carriers.
It was shown [11] that the amount of chargereaching the
upper plane via diffusion from an ion track can be calculated

from

where is the initial track density (charge per unit volume)
and is the charge-collection efficiency. The two coordinates

1 and 2 are lateral coordinates, while is the longitudinal
coordinate. The charge collection efficiency is calculated by
solving the boundary value problem

in substrate, on upper plane,

on lower plane

where is the reciprocal of the diffusion length function. It is
assumed that depends only on the longitudinal coordinate,
so depends only on the longitudinal coordinate. Suppressing
the superfluous coordinates, the equation forbecomes

for

(A1)

Integrating the equation for with respect to the lateral
coordinates gives

where is the linear track density (charge per unit length). We
consider the case where this density is uniform over a track
length so that is a step function. It is zero when

, and constant when . Dividing by this constant
produces which is calculated from

(A2)

B. An Upper Bound

When is specified and is known from (A1), can
be calculated from (A2). However, the present objective is to
obtain a bound for the ratio which can be derived
when is not specified and is not known. Such a bound
can be obtained by replacing the unknownon the right side
of (A2) with an expression that still contains the unknown
but has some properties of built into it so that information
can be extracted without requiring thatbe solved. Such an
expression can be obtained by converting (A1) into an integral
equation. Integrating (A1) twice and then using an integration
by parts to change the appearance of the result gives

(A3)

where the Green’s function is given by

if
if

Substituting (A3) into (A2) and changing the order of inte-
gration gives

(A4)
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where and are defined by

if
if

(A5)

Note that (A1) implies that is not negative anywhere, so
2 is not negative anywhere. Another property of2 can

be derived by first differentiating (A3) and evaluating the
derivative at to get

(A6)

Note that and is not negative anywhere, so
cannot be increasing in any neighborhood of the point .
Therefore, the derivative on the left side of (A6) cannot be
positive. Combining this observation with (A6) gives

(A7)

Another equation containing2 is obtained by evaluating (A4)
at while using (A5) to get

(A8)

An important property of , implied by (A5), is the
type of curvature that it has when plotted againstwith
fixed. When is linear in . When
has the curvature illustrated in Fig. 7. Thecurve is convex
when viewed from the left, so it is bounded below by any
tangent line, such as illustrated by the lower dashed line in
the figure (the upper dashed line is needed in Section VII-C).
Selecting any tangent line, which is tangent to thecurve at

any , we have the bound

if

and (A9)

which applies to any and any . The
right side of (A9) is the equation of the tangent line, regarded
as a function of with fixed. Multiplying (A9) by 2 and
integrating and then using (A4), (A7), and (A8) to substitute
for the integrals gives

if and

(A10)

which applies for any . In particular, (A10) applies
when , and we obtain the obvious result .
A stronger statement can be made when because
we can then let and (A10) becomes

if

Fig. 7. Illustration of the curvature ofH(z; �) when plotted against� with
z fixed. TheH curve (solid) is bounded above by the chord connecting the
end points (upper dashed line) and bounded below by any tangent line, such
as the lower dashed line shown.

When the above inequality does not apply, we still have
, so the bound can be expressed as

if

if
(A11)

The upper bound given by (A11) is the smallest upper bound
that applies when no restrictions are imposed on the function

. This can be demonstrated by showing that the bound is
approached by a limiting case. To demonstrate this, first note
that the left side of (A8) is not negative, so (it can
be seen from (A1) and (A2) that the equality applies when

everywhere). The limiting case occurs when2( ) is
a Dirac delta function centered at and with an
infinite coefficient selected so that a plot of( ) [satisfying
(A1)] is a straight line connecting the point
to the point , and with for .
A direct evaluation of from (A2) using this produces
the right side of (A11).

The large limit shown as (2) in Section IV is obtained by
simply replacing with in (A11).

C. A Lower Bound

The curvature of discussed in Section VII-B and il-
lustrated in Fig. 7 implies that is bounded by the chord
connecting the end points (the upper dashed line in Fig. 7).
This gives the inequality

for all

and all
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Multiplying this inequality by 2, integrating, and then using
(A4) and (A8) to substitute for the integrals gives

for all (A12)

The lower bound given by (A12) is the smallest lower bound
that applies when no restrictions are imposed on the function

. This can be demonstrated by showing that the bound is
approached by a limiting case. Such a case occurs when2( )
is a Dirac delta function centered at , and with a
coefficient selected so that a plot of [satisfying (A1)]
first connects the point to the point [ ,

], and then becomes a straight line connecting the
point [ , ] to the point ( ). A direct evaluation of

from (A2) using this produces the right side of (A12).
Note that the upper bound in (A11) and the lower bound

in (A12) come together when the ratio is close to the
smallest allowed value (which is two). This could have been
anticipated from the fact that there is only one possible(zero)
which can make , so is completely determined
in this limit. Unfortunately, our concern is with the opposite
extreme of a large . Replacing with in (A12)
produces a lower bound of zero. To obtain a nontrivial lower
bound, it is necessary to impose some constraint that restricts
the set of functions from which may be selected.

The type of constraint that is convenient for analysis is
obtained by selecting some depth and some
fraction and stipulate that the fractional contribution
to , from charge collected from a depth exceeding, is
not larger than , i.e.,

(A13)

A bound consistent with (A13) can be derived by first eval-
uating (A4) at and then use (A13) to eliminate the

to get

(A14)

If , we have the obvious bound
. We now consider the case where .

Three possibilities to consider are , ,
and . It can be shown from (A5) that all three
possibilities result in

with the equality applying when . Multiplying the above
inequality by 2 and integrating and then using (A4) and
(A14) to substitute for the integrals gives

if

It is convenient to express as some multiple of .
Using this notation, the bounds are expressed as

if

if
(A15)

which provides a nontrivial result in the largelimit.
As an example, suppose the set of possible diffusion length

functions, that the bound is to apply to, is restricted by the
constraint that less than 10% of the charge collected from the
infinitely long track is from depths exceeding four times the
effective diffusion length. We then let
, and (A15) becomes (4) in Section IV.

D. Calculations Used for the Examples

The numerical examples in Section V were obtained by
solving (A1) with selected to represent some cases of
interest. The easiest way to solve this problem is backward.
Instead of selecting an representing a case of interest and
attempting to solve (A1) for , it is easier to select an and
use (A1) to find out what is. This is a trial and error method.
If the produced by a selected does not approximate the
function that we would like it to be, it is necessary to try
again with another . The used for the numerical examples
is given by

(A16)

where and 0 are constants satisfying

but are otherwise arbitrary. The constantis not arbitrary.
It is calculated from

The reciprocal of the diffusion length function used in the
examples is calculated from (A1) and (A16). The result
is a blip, illustrated in the figures in Section V, which has
an asymptotic value equal to. The blip center depth is
approximately when the blip is narrow. The relationship
between blip depth and is more obscure with wider blips,
but the depth increases when increases. The blip width
is most strongly influenced by and increases when
increases. The blip amplitude is most strongly influenced by

and increases when increases.
The normalized charge is calculated from (A2) and

(A16). To evaluate the integral in (A2), it is necessary to
evaluate the integral defined by

Special values are given by and 2 .
The argument can have either sign. When , can
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be evaluated from the series

if

The series converges very slowly when , although
convergence is faster for larger. Calculations used for the
examples approximated the series with the first 100 terms for
all . Truncation errors are reduced by adding the terms
in reverse order. The series diverges if . This case
can be treated by first converting the argument to a positive
number using the identity

and then using the series to evaluate the term containing the
positive argument.
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